Feeds:
Posts
Comments

Posts Tagged ‘haber’

BBC_news_sperm_count
18 Mart 2018’de BBC’de çıkmış bir sağlık haberi. Haberin başlığına göre “sperm sayısı düşük olan erkeklerin sağlık problemleri yaşama riski daha yüksek”. Fakat gerçekte olan büyük ihtimalle tam tersi: Sağlık problemleri yaşayan erkeklerin genel olarak sperm sayısı daha düşük. Epidemiyolojide buna “reverse causality” (ters nedensellik) diyoruz ve analizlerimizde çok sık karşılaşıyoruz.

Bir Genetik Epidemiyolog olarak (anahtar kelime: epidemiyolog) tıpla ilgili önemli gelişmeleri takip etmeye çalışıyorum. Fakat bu günlerde tıp ve epidemiyoloji alanında o kadar çok ‘buluş’ yapılıyor ki çıkan her habere yetişmek imkansız. Bu yüzden BBC, The Guardian, The Times gibi saygıdeğer haber kaynaklarına odaklanıyorum. Işin kötüsü, bu haber kanallarında dahi çıkan haberlerin çoğunun verdiği ana mesaj çoğu zaman yanlış ya da abartılı: ya analizi yapan bilim insanlarına fazla güveniyorlar ya da bilim insanlarının kendilerine söylediklerini daha sansasyonel hale getiriyorlar.

Belki astrofizik alanında yapılan bir buluş ile ilgili bir haberin doğru olup-olmaması bizi fazla etkilemez ama sağlığımızı ilgilendiren bir ‘buluş’un yanlış çıkması için aynı şeyi söyleyemeyiz. Insanlar bu haberleri okuyup, ona göre kendi hayatlarında değişimlere gidebiliyorlar. Bu tarz haberlerin belki de en etkilisi 1998’de tıp alanındaki en ünlü dergi olan The Lancet’de çıkan bir makaleyle ilgiliydi (Wakefield et al, 1998). Makaleye göre, özetle, MMR (measles, mumps, and rubella) aşısının test edildiği 12 çocuğun hepsinde de otizm, davranış bozuklukları, bağırsak problemleri gibi sorunlar ortaya çıkmıştı. Çalışma tüm dünyada haber olmuş ve MMR aşısına karşı kampanya başlatılmıştı. Bu sadece MMR aşısına değil, tüm aşılara dini (“kaderci”) ya da başka sebeplerden dolayı (“organik yaşam” savunucuları gibi) karşı çıkan grupların işini kolaylaştırdı ve bu “anti-vaxxer” (aşı karşıtı) gruplar her mecrada argümanlarını bu makaleyle güçlendirdiler. Fakat sonraki bilimsel ve adli araştırmalarla bu çalışmayı yürüten Andrew Wakefield’ın aşı karşıtı gruplardan para aldığı ve sonuçların neredeyse tamamını kendisinin uydurduğu ortaya çıktı (daha detaylı bir analiz için tıklayın). Gerçek, özellikle bilim alanında, eninde sonunda ortaya çıkıyor fakat iş işten geçmiş olabiliyor bazen. Bu makaleninin etkileri toplum nazarında bugün dahi devam ediyor ve bir sürü aile çocuklarına bu tarz korkulardan dolayı aşı (vaccination) yapılmasına izin vermiyor.

Bize epidemiyolojide öğrettikleri ilk şey: “correlation does not mean causation” (korelasyon, sebep-sonuç ilişkisi olduğu anlamına gelmez). Fakat bugünlerde tıp ve epidemiyoloji alanında ‘buluş’ adı altında bir sürü korelasyon (correlation) yayınlanıyor. Bunların arasında ilginç ve çok okunacak olanları gazeteciler yakalıyor ve “kahve içmek kansere yol açıyor”, “çikolata yiyenler daha başarılı” ve benzeri başlıklı haberler yayınlıyorlar. Birkaç gün sonra tam tersi bir haber okuduğumuz da oluyor (“kahve içmek kanseri engelliyor!” gibi). Bu tarz haberlerin yayılmasında gazetecilerin suçu olduğu gibi, bilim insanlarının da suçu var. Sıkıntı şu: bilim insanlarının elindeki datalar son 5-10 yılda inanılmaz bir hızla büyüdü ama bilim insanları dahi genel olarak bu büyümeye data analizi açısından yetişemedi. Datalar çok büyük olduğundan, hipotezsiz, data analizi ve “causal inference” (nedensel çıkarım) uzmanlığınız olmadan “dur şunu da analiz edeyim!” dediğiniz zaman, istemediğiniz kadar korelasyon buluyorsunuz.

Örnek olarak: diyelim ki datanızdaki tonlarca verinin arasında kişilerin kahve içme oranı ve akciğer kanseri teşhisi de var. Eğer basit bir istatistiki korelasyon (örneğin: linear regression) analizi yapacak olursak, büyük ihtimalle ikisi arasında anlamlı bir korelasyon bulacağız. Bu korelasyonu sadece siz değil, benzer dataya bakan 10 kişi daha bulacak; bunlardan belki 3’ü bu korelasyonun gerçek olduğuna inanacak ve bir makale yazacak; 1’i de makaleyi gönderilen derginin “peer review” (birkaç bilim insanı tarafından değerlendirme) aşamasından geçirip, yayınlayacak – ve büyük bir ihtimalle ilginç bir ‘buluş’ olarak her yerde haber olacak: “kahve içmek akciğer kanserine yol açıyor!

Gerçekte ise kahve içmeyle akciğer kanseri arasında hiçbir sebep-sonuç ilişkisi yok. Bulduğumuz korelasyonun sebebi bu ikisiyle de – yani kahve içmek ve akciger kanseriyle – bağlantılı üçüncü bir (confounding) faktörün olması: sigara içmek. Kahve içenler genelde daha fazla sigara içiyorlar ve sigara içmek de akciğer kanserine sebep olduğu için, eğer istatistiki modelimize kişinin sigara içme oranını da eklemezsek, kahve içmeyle akciğer kanseri arasında istatistiki olarak güçlü bir korelasyon buluruz. Maalesef bu tarz sebep-sonuç ilişkisi göstermeyen korelasyonların önüne geçmek ve elimine etmek kolay değil; bu yüzden bilim insanlarının daha dikkatli olması ve yaptıkları her “buluş”u başka bilimsel yöntemlerle desteklemeden yayınlamaması gerekiyor.

cikolata_ve_nobel_odulu
Figür, ülkelerdeki çikolata tüketim oranıyla ülkenin toplamda kazandığı Nobel ödülü sayıları arasındaki inanılmaz korelasyonu gösteriyor. O zaman bu “buluş”a bakıp, Türkiye’deki herkese çikolata yedirmeye başlamak lazım – malum ülke olarak sadece iki Nobel ödülümüz var. Fakat bu korelasyonun (büyük ihtimalle) muhtemel en büyük sebebi, çikolata tüketimiyle, Nobel ödülü sayılarını etkileyen üçüncü bir faktörün olması: GDP per capita at purchasing power parity (satın alma paritesi). Bulunan daha ilginç korelasyonlara bakmak için tıklayın. Image source: http://www.nejm.org/doi/full/10.1056/NEJMon1211064.

Konuyu daha fazla uzatmadan genel bir prensip olarak şunu rahatlıkla söyleyebilirim: bir buluş kulağa ne kadar ilginç ve sansasyonel geliyorsa, yanlış olma ihtimali de o derece yüksektir.

Biraz zor olacak ama neden böyle düşündüğümü kısaca izah etmem gerekirse: bir buluşun bana ‘ilginç’ gelmesi için, o buluşun o konuda bilinenlerden çok farklı birşey olması lazım. Böyle bir buluş yapmak günümüzde bir hayli zor çünkü artık bilim insanı sayısı eskiden olduğu gibi az değil; artık binlerce bilim insanı bir konu üzerinde çalışıyor olabilir (örnek: kanser). Artık her tür fikir/hipotez, birçok grupta aynı anda ortaya çıkabiliyor ve test ediliyor. Bundan dolayı birkaç haftada bir ‘buluş’ yapılıyor denebilir – ama eskiye nazaran alanını on yıllarca ileri taşıyan değil, ‘inkremental’ buluşlar bunlar. Belki son ufak adımı bir grup/insan diğerlerinden önce atıyor ve bu yüzden alanlarında ‘büyük buluşu yapan kişi/grup’ diye anılıyorlar. Oysa belki 3-5 ay sonra başka bir grup büyük ihtimalle aynı buluşu yapacaktı. Eskiden Newton ya da Einstein gibi elit bilim insanları zamanlarının çok ilerisinde olabiliyorlardı, çünkü etrafta fazla bilim insanı yoktu ve bilim bu kadar hızlı ilerlemiyordu.

Son olarak, bu tarz haberleri okurken biraz ihtiyatlı olmakta fayda var ve bu çalışmalara bakıp hayatımızda değişiklikler yapmadan önce, eğer anlıyorsak, araştırma metotlarına bakmamız lazım – ya da epidemiyolojiden ve “causal inference”dan iyi anlayan (yani doğru soruları sorabilen) birisine danışmamız lazım.

power_posing
Amy Cuddy’nin “power posing” konuşması, en çok izlenen TED talk. Kısaca, “eğer güçlü görünen pozlar verirseniz, kendinize güveniniz artar” diyor bu konuşmasında. Fakat sonraki bilimsel analizler bunun doğru olmadığını ve Amy Cuddy’nin analiz metotlarının bir bilim ınsanından beklenmeyecek kadar zayıf olduğunu gösteriyor. Detaylar için tıklayın. TED talk source: https://www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are

PS (post-script/dipnot): Konuyla ilgilenenler için ekstradan bir-iki paragraf daha karalayayım istedim. Sağlık alanında yapılan bir buluş (i) delil/deney bazlı (evidence-based) ve (ii) epidemiyolojik, istatistiki ve biyolojik olarak mantıklı olmalı. Bir ‘buluş’la ilgili haberi okuduktan sonra “ya evet, mantıklı” demeden önce elimizden geldiğince “bu 4 konuda tatmin edici mi?” diye sorgulamamız lazım. Kriterlere örnek vermek gerekirse:

  • “Evidence-based” dedik. Bunlara en güzel karşıt örnekler “homeopati/alternatif tıp” olarak adlandırdığımız “ilaç/kürler”. Bunların hepsini toptancı bir yaklaşımla “kesinlikle etkisiz” diye çöpe atmamak lazım fakat çoğu alternatif tıp savunucusunun “belge” olarak sunduğu şeyler kulaktan dolma bilgiler: “Kaynımın şu hastalığı vardı; şu Hoca bir bitki karışımı verdi ve hastalığı geçti” gibi. (Bilinmeyen bir sebepten dolayı) bir kişinin hastalığı geçiyor, 10 kişininki geçmiyor; ve sadece bu hastalığı geçen kişininki kulaktan kulağa yayılıyor, reklamı yapılıyor. Bilim insanlarının daha bilmediği/araştırması gereken çok şey var fakat bir ilaç “klinik deneme”den (clinical trial) geçmeden önce onun efektif olduğunu, yani gerçekten de bir çare olduğunu belgelemek çok zor.
  • “Epidemiyolojik olarak mantıklı olmalı” dedik: Yukarıda bahsettiğim kahve, sigara ve akciger kanseri örneğinden tonlarca var hayatta. Kendimize, “bu korelasyona sebep olabilecek 3.ncü bir faktör var mı?” diye sormalıyız.
  • “Biyolojik olarak mantıklı olmalı” dedik: “X geni gırtlak kanseri yapıyor” diye bir haber/makale okudunuz ama bu “X” geni sadece ayağımızdaki bazı hücrelerde aktifse, büyük ihtimalle yanlış bir haber/sonuç.
  • “Istatistiki olarak mantıklı olmalı” dedik: Çok basit bir örnek olarak aşağıdaki figüre bakınız. Basit bir linear regression analiziyle bu iki veri arasında bir korelasyon buluruz. Fakat datayı visualise/plot ettiğimiz zaman, aslında korelasyon çıkmasının sebebinin en üstteki “outlier”dan (aykırı gözlemden) dolayı olduğunu görebiliyoruz. Burada bir data “temizleme” problemi ve yanlış bir istatistiki modelin kullanıldığını görebiliyoruz. Böyle bir plot çizmesek, bu korelasyonun yanlış olduğunu göremezdik.
graph-3
Yanlış bir linear regression (doğrusal regresyon) metot kullanımı. Kendi başına en uçta duran noktayı görmezden gelirsek, X ve Y eksenindeki veriler arasında hiçbir korelasyonun olmadığını çok rahat bir şekilde görüyoruz. Fakat o problemli veri silinmediğinden ve yanlış bir şekilde linear regression metodu kullanıldığından, aralarında sanki pozitif bir korelasyon varmış gibi bir çizgi çizilmiş.

Referanslar:

Wakefield et al, 1998. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet. URL: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2897%2911096-0/abstract

Editorial, 2011. Wakefield’s article linking MMR vaccine and autism was fraudulent. BMJ. URL: http://www.bmj.com/content/342/bmj.c7452

Read Full Post »